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Short Note

Seismic attenuation in finely layered porous rocks:
Effects of fluid flow and scattering

Boris Gurevich∗, Vadim B. Zyrianov ‡, and
Sergey L. Lopatnikov∗∗

INTRODUCTION

Scattering caused by fine layering is known to play an im-
portant role in seismic attenuation. If the rock is also porous
and permeable, additional attenuation can be caused by a flow
of the pore fluid induced by the passing wave (see e.g., White,
1983). At frequencies higher than 100 kHz, standard Biot’s at-
tenuation (Biot, 1962; Bourbié et al., 1987) may also contribute
to the overall attenuation in a layered poroelastic rock. While
standard Biot’s attenuation has been well known for decades,
the effects of scattering by fine layering and interlayer flow have
been studied extensively both theoretically and numerically in
recent years. However, in all theoretical approaches proposed
thus far, these effects have been treated separately: scattering
was studied for purely elastic rocks (Burridge and Chang, 1989;
Shapiro et al., 1994), while attenuation caused by interlayer
flow was considered either for periodically stratified media that
causes no scattering (Norris, 1993) or for frequencies at which
scattering is negligible (Gurevich and Lopatnikov, 1995).

In this short note, we perform the theoretical and numeri-
cal study of the seismic attenuation in finely layered poroelastic
rocks, caused by the combined effect of interlayer flow and scat-
tering, as well as standard Biot’s visco-inertial mechanism (for
simplicity, only waves propagating normal to layering are con-
sidered). The known theoretical solutions for these three mech-
anisms of attenuation are analyzed in comparison for randomly
and periodically layered poroelastic media. A quantitative ex-
ample is used to identify the relative magnitude, predominant
frequency range, and typical frequency dependence for each
of these mechanisms. For situations where the contributions of
different mechanisms are comparable, we propose that their
combined effect can be adequately modeled by superposing
the theoretical solutions for the three phenomena.

Presented in part at the workshop, “Effective Media Concepts for Seismic Wave Propagation” (January 22–23, 1995, Karlsruhe, Germany).
Manuscript received by the Editor August 31, 1995; revised manuscript received April 19, 1996.∗Formerly Institute of Geosystems, Moscow, Russia; presently The Institute for Petroleum Research and Geophysics, P.O. Box 2286, Holon 58122,
Israel.
‡Institute of Geosystems, Moscow, Russia.∗∗Formerly Institute of Geosystems, Moscow, Russia; presently Chemical Faculty, Moscow State University, Moscow, Russia.
c© 1997 Society of Exploration Geophysicists. All rights reserved.

To test the approximate theoretical solutions, we perform
numerical experiments using the OASES-Biot software pack-
age that simulates elastic wave propagation in a sequence of
solid, fluid, and poroelastic horizontal layers. For all the three
mechanisms of attenuation, the numerical results are in good
agreement with the theoretical predictions. The numerical tests
also confirm that the superposition model gives a satisfactory
approximation of the overall attenuation.

THEORY

Biot equations for 1-D medium

Elastic wave propagation through a finely layered poroelas-
tic medium may be described by Biot equations of poroelas-
ticity. Consider a porous continuum consisting of a material of
solid grains with the bulk modulus Ks and density ρs, and a
pore fluid with the bulk modulus (incompressibility) K f , dy-
namic viscosity η, and density ρ f . The solid grains form an
elastic matrix that is characterized by the porosity φ, perme-
ability κ , and bulk and shear moduli K and µ, measured in dry
(unsaturated) conditions. The parameters of the medium are
assumed to depend on the zcoordinate only. For time-harmonic
compressional waves propagating along z-axis the Biot equa-
tions of poroelasticity can be written in the form (Biot,
1962)
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Here u is the solid displacement, and w = φ(u f − u) is the
weighted (by porosity) fluid displacement relative to the solid
matrix, with u f denoting the fluid displacement (the scalar form
is used since only z-components of the displacements are con-
sidered). The overall density of the two-phase medium is de-
fined as ρ = φρ f + (1− φ)ρs, and the coefficients q, H,C, and
M are given by

q = iηF/κω, (3)

H = K + 4
3µ+ σC, (4)

C = σM, (5)

M = 1
/[

σ − φ
Ks
+ φ

K f

]
, (6)

and

σ = 1− K/Ks. (7)

Here and below the time dependence e−iωt is implicit (ω =
2π f ).

In equation (3), F = F(ω/ωc) is the dynamic correction
function, and ωc = ηφ/κρ f is a so-called Biot’s characteris-
tic frequency. For a homogeneous medium the characteristic
equation of the linear system (1)–(2) is a familiar dispersion
equation for the compressional waves in a homogeneous fluid-
saturated porous medium (Biot, 1962; Bourbié et al., 1987).
The roots of this equation are the (complex) wavenumbers of
the fast and slow (type II) compressional waves k̃1 and k̃2. At
low frequencies that obey the condition ω ¿ ωc, the function
F ≈ 1, and the wavenumbers k̃1 and k̃2 may be expressed in
the form

k̃1 = k1 + iαB = k1
(
1+ i Q−1

B

/
2
)
, (8)
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Here

k1 = Re{k̃1} = ω/c1 = ω
(
ρ

H

)1/2
, (10)

k2 = Re{k̃2} =
(
ωη

2κN

)1/2
; (11)

c1 = (H/ρ)1/2 is the phase velocity of the normal (fast) P-wave,
αB = ωQ−1

B /2c1 is its amplitude attenuation coefficient, and
the constant N is defined by

N = (M H − C2)/H = M

H

(
K + 4

3
µ

)
. (12)

For well-consolidated rocks the dimensionless attenuation of
the fast wave Q−1

B can be approximately written as

Q−1
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f
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ρ2
f H
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ρ f H

)
≈ ρ f

ρ

ω

ωc
φ. (13)

This Biot’s attenuation is caused by the viscous dissipation
in the oscillatory flow of the pore fluid relative to the solid
matrix, the flow that is induced by the passing wave because
of the difference in properties between the solid and the
fluid.

It turns out from Biot theory that at low frequencies the
compressional type II wave is indeed slow compared with the
normal compressional (type I or “fast”) wave which, in fact, is
a normal P-wave with very small attenuation, so that k1 ¿ k2
and Q−1

B ¿ 1.

Random and periodic layering

According to Biot theory, at low frequencies the attenuation
of the normal P-wave in a homogeneous poroelastic medium is
caused by the so-called global flow phenomenon. The passing
wave induces small fluid pressure gradients between regions
of compression and extension, and these gradients cause fluid
flow relative to the solid. The fluid flow incurs viscous loss,
resulting in a small attenuation of the passing wave.

In real rocks such phenomena may be overridden by so-
called local flow effects, caused by the flow of the pore fluid
between regions of different compliances under the compres-
sion (or extension) induced by the passing wave (Mavko and
Nur, 1975; Jones, 1986). If the medium is composed of thin
alternating layers of two poroelastic materials with different
compliances, then propagation of a P-wave will squeeze the
fluid from the more compliant into the less compliant layers.
This local flow of the pore fluid is accompanied by the viscous
loss and results in the attenuation of the passing wave.

The local flow attenuation is not taken into account by the
traditional approach to Biot theory, the approach that assumes
the spatial homogeneity of a poroelastic medium. However, if
spatial homogeneity is not assumed, Biot theory can be used
effectively to analyze wave propagation in inhomogeneous
poroelastic media. Such a theory will implicitly account for
the local flow attenuation.

Equations (1) and (2) govern the propagation of compres-
sional waves in a poroelastic medium with an arbitrary depen-
dence of its properties on the coordinate z. The effect of fine
layering, either random or periodic, on the attenuation can be
studied in the context of these equations by assuming that prop-
erties of the medium [or the coefficients of equations (1) and
(2)] are random or periodic functions of z. Although in physics
random and periodic situations are usually treated quite differ-
ently, it is also possible to treat a periodic function as a random
function with a periodic autocorrelation. For the sake of unifor-
mity, the latter approach is used in this paper. As an aside, we
will show that the results so obtained agree well with the exact
solutions known for periodically layered media. Based on the
above, we assume that any given parameter of the medium, say,
ζ , is a random function of z with a constant average 〈ζ 〉, and
the normalized autocorrelation functionψ(ξ) = 〈ε(z)ε(z+ξ)〉,
where ε(z) denotes relative fluctuations of the parameter ζ ,
i.e., ζ = 〈ζ 〉[1 + ε(z)]. Here and below angle brackets de-
note statistical (ensemble) averaging. The type of layering is
defined by the form of the normalized autocorrelation func-
tion. For random layering we will assume the exponential
correlation

ψ(ξ) = 〈ε2〉 exp(−2ξ/h). (14)
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For periodic layering, the following “serrate” correlation func-
tion has proved appropriate:

ψ(ξ) = 〈ε2〉

×
{

1− 2(ξ − 2nh)/h, 2nh≤ ξ < (2n+ 1)h

−1+ 2[ξ − (2n+ 1)h]/h, (2n+ 1)h≤ ξ < 2(n+ 1)h.

(15)
Once such an assumption about the statistics of layering has

been made, the problem of wave propagation through a finely
layered poroelastic medium reduces to a stochastic system of
equations which could, in principle, be analyzed by rigorous
stochastic equation methods. However, for such complex equa-
tions as Biot equations of poroelasticity, this approach appears
to be too complex, given the complexity of the analogous prob-
lem for elastic media (Shapiro and Hubral, 1994). To avoid such
a complexity, we propose a certain decomposition of the prob-
lem on the basis of known physics of the phenomenon.

As pointed out in several publications, attenuation of a com-
pressional wave propagating through a finely layered porous
rock can be caused by the three factors: (1) classical viscous-
inertial Biot attenuation; (2) scattering owing to fine layering;
(3) wave-induced flow of the pore fluid from layer to layer. Our
idea of the decomposition is to treat the phenomena (1)–(3)
separately, and to use the superposition of the results as a
solution of the overall problem. In the following, we will outline
the theoretical solutions for the three mechanisms of attenua-
tion to be used in the superposition model.

Standard Biot’s attenuation.—As mentioned above, Biot
theory predicts a small attenuation of a normal (fast) P-wave
in a homogeneous poroelastic medium. Obviously, this attenu-
ation will also take place in a layered poroelastic medium, but
will not be affected significantly by the layering.

Scattering attenuation.—Scattering attenuation in our
model is caused by fine layering, and is not supposed to be
affected by poroelasticity. Thus, to focus on the effect of scatter-
ing in a poroelastic layered medium, we can get rid of the poroe-
lastic effects if we replace each individual poroelastic layer with
an equivalent elastic layer with the density ρ(z) and elastic ve-
locities vp(z) = c1(z) = √H(z)/ρ(z), and vs(z) = √µ(z)/ρ(z).
By doing so, we reduce the problem of attenuation in a finely
layered poroelastic medium to a problem of attenuation in an
equivalent finely layered elastic medium. Moreover, we con-
sider only waves propagating normally to layering, and there-
fore our problem is also equivalent to that for an acoustic finely
layered medium.

Consider P-waves propagating through a layered medium
with a given correlation function ψ(ξ) of the fluctuations ε(z)
of the P-impedance,

vp(z)ρ(z) = 〈vp(z)ρ(z)〉[1+ ε(z)]. (16)

The solution for the scattering attenuation in such a medium is
known as a generalized O’Doherty–Anstey formula (Shapiro
et al., 1994), which for waves propagating normal to layering
can be written in the form

Q−1
scat = 2k

∫ ∞
0

dξ ψ(ξ) cos(2kξ), (17)

where k = ω/〈vp〉 = k1.

As can be seen from equation (17), the scattering attenu-
ation depends essentially on the form of the function ψ(ξ).
For random fluctuations with exponential correlation (14), the
result is given in Shapiro et al. (1994) as

Q−1
scat = S

kh

1+ k2h2 , (18)

where S= ψ(0) = 〈ε2〉.
The solution for the scattering attenuation in a randomly lay-

ered medium as a function of frequency given by equation (18)
is a typical relaxation curve (long-dashed line in Figures 1 and 2)
with the maximum occurring at a frequency

fscat = c1/2πh, (19)

at which k1h = 1. In the low-frequency limit ( f ¿ fscat) the
(dimensionless) scattering attenuation Q−1

scat is proportional to
f 1, while at higher frequencies ( f À fscat) it decreases with
increasing frequency as f −1.

Equation (17) can be used, at least technically, to derive
an expression for the attenuation in a periodically layered
medium. To do so, we have to substitute the correlation

a)

b)

FIG. 1. Attenuation (inverse Q) for an extremely finely layered
water-saturated sandstone, composed of alternating layers of
two low-permeability (0.5–0.8× 10−14 m2) poroelastic materi-
als, whose rock matrix properties are shown in Table 1 under
(1) and (2). (a) random layering, (b) periodic layering.
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function (15) into equation (17). The integration is most
easily performed if we express the function (15) in Fourier
series,

ψ(ξ) = 〈ε2〉 8
π2

∞∑
n=0

cos[(2n+ 1)πx/h]
(2n+ 1)2 . (20)

a)

b)

c)

FIG. 2. Attenuation (inverse Q) for a finely layered wa-
ter-saturated sandstone, composed of alternating layers of two
high-permeability (0.5–0.8 × 10−12 m2) poroelastic materials,
whose rock matrix properties are shown in Table 1 under (1)
and (2). (a) and (b) random layering; (c) periodic layering.

Thereby, the integration reduces to a Fourier transformation
of cosine functions, and yields

Q−1
scat =

4Sk

π

∞∑
n=−∞

1
(2n+ 1)2 δ

[
k− (2n+ 1)π

2h

]
. (21)

Equation (21) shows that the attenuation in a periodically
stratified elastic medium is zero, except for the odd multiples of
the resonant frequency f0 = c/4h, where no propagation can
take place. This result is consistent with the exact solution of the
problem of wave propagation in a periodic medium (Brillouin,
1963), considered in the limit of low contrast of medium prop-
erties between layers. The “band-stop” frequencies are those at
which constructive interference of backwards reflected waves
occurs. The solution (21) implies that there is no scattering of
energy in periodic media: all the energy is either fully trans-
mitted or fully reflected backwards.

Attenuation caused by the fluid flow between layers.—The
solution for the attenuation caused by the pore fluid flow be-
tween layers of a finely layered poroelastic medium (without
scattering) can be obtained by neglecting all scattering terms
in stochastic equations derived from equations (1) and (2). The
simplified stochastic equations can be then analyzed by using a
simple statistical technique known as Bourret approximation.
This has been done by Gurevich and Lopatnikov (1995) who
obtained the following solution for the attenuation of the nor-
mal P-wave caused by the pore fluid flow between layers in a
poroelastic finely layered medium:

Q−1
flow =

√
2sk2

∫ ∞
0

dξ ψ(ξ) exp(−k2ξ) cos(k2ξ + π/4),

(22)
where the constant s is defined by

s= 〈C/H〉
〈1/H〉〈N〉 . (23)

Here ψ(ξ) is the autocorrelation function of ε which now de-
notes the fluctuations of C/H ratio,

C(z)/H(z) = 〈C/H〉[1+ ε(z)]. (24)

Similar to the scattering case, explicit expressions for random
and periodic layering can be obtained by the substitution of
an appropriate correlation function into equation (22). For the
medium with the exponential correlation we get

Q−1
flow = s∗

k2h

(k2h)2 + 2k2h+ 2
, (25)

where s∗ = s〈ε2〉. Similarly, the substitution of the periodic
correlation function (15) into equation (22) yields

Q−1
flow = s∗

sinh k2h− sin k2h

k2h(cosh k2h+ cos k2h)
. (26)

As shown in Gurevich and Lopatnikov (1995) this result is in
good agreement with the exact solution for periodically strati-
fied poroelastic layers, which was recently published in Norris
(1993).

Using equations (25)–(26) along with equation (11), we can
analyze the attenuation caused by fluid flow as a function of fre-
quency (short-dashed line in Figures 1 and 2). Both for random
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and periodic layering the function Q−1
flow( f ) has its maximum

in the vicinity of a frequency

fflow =
κ

η

K f

φh2 , (27)

at which k2h ≈ 1. This result had to be expected since the in-
terlayer flow is associated with the energy conversion from
the normal (fast) P-wave to the slow P-wave at the inter-
faces, as shown by Gurevich and Lopatnikov (1995). In the
low-frequency limit, Q−1

flow is proportional to
√

f for random
layering with exponential correlation and to f for periodic lay-
ering. At frequencies higher than fflow attenuation decreases
with increasing frequency as 1/

√
f for both kinds of layering.

Superposition of the theoretical results

The lines in Figures 1 and 2 schematically show the behavior
of the inverse Q versus frequency for the three mechanisms of
P-wave attenuation in a randomly layered poroelastic medium.
The maximum scattering attenuation occurs when the charac-
teristic layer thickness h (twice the correlation length) equals
λ1/2π , where λ1 = 2π/k1 is the wavelength of the propagating
wave (ordinary P-wave), whereas for the fluid flow attenuation
the maximum occurs when the same quantity h roughly equals
the attenuation length λ2 = 1/k2 of the type II or “slow” wave.
Since k2 À k1, the characteristic frequency for fluid flow at-
tenuation fscat is usually substantially higher than fflow. The
standard Biot attenuation builds up at still higher frequencies.
Nevertheless, in many cases the curves representing the at-
tenuation owing to the three mechanisms overlap (as shown
in Figure 2a). In such circumstances, it seems reasonable to
assume that the attenuation caused by the three mechanisms
would make up the superposition of the three solutions

Q−1 = Q−1
B + Q−1

scat + Q−1
flow. (28)

This superposition model is shown as a solid line in Figures 1a
and 2a.

For a periodically layered medium, the theoretical solu-
tions for the three mechanisms of attenuation are shown in
Figures 1b and 2c. However, the solution for the scattering ef-
fect is not shown. As mentioned above, there is no scattering in
a periodic medium. Thus, the solution (21) cannot be included
in the superposition model for periodic media, which in this
case reads

Q−1 = Q−1
B + Q−1

flow. (29)

This is the model shown as a solid line in Figures 1b and 2c.

NUMERICAL TESTS

Modeling

The theoretical solutions for the scattering and fluid-flow
attenuation presented in the previous section are essentially
statistical in nature, and are based on a number of assumptions
(infinite extent of the layered medium; small contrast between
layers; additivity of the attenuation mechanisms). To check the
validity of the theoretical solutions, we perform a set of numer-
ical experiments for a finite stack of poroelastic layers. The
modeling is performed using the software package OASES

(Schmidt and Tango, 1986) which allows computation of the
time-harmonic plane-wave transmission coefficients for elastic
waves propagating through a sequence of horizontal layers. Re-
cently developed so-called Biot extension of OASES enables
handling of porous fluid-saturated layers, in addition to elastic
and fluid layers, treated as Biot-type two-phase continua with
open-pore boundary conditions at interfaces (Deresiewicz and
Skalak, 1963).

We use this modeling code to compute transmission coeffi-
cients T of waves propagating through a computer-generated
random (or periodic) sequences of fluid-saturated layers.
Corresponding attenuation coefficients α and inverse qual-
ity factors 1/Q are then computed using simple formulas
T = exp(−αh6), 1/Q = αc1/π f , where h6 is an overall
thickness of the stack of layers, and c1 is a Backus average
velocity in the stratified medium. The same procedure is also
performed for an equivalent randomly layered elastic sequence
(porous layers are replaced by equivalent elastic ones using the
Gassmann equation).

Results

Numerical experiments are performed for random and peri-
odic stacks of n alternating layers of porous materials (1) and
(2) (Table 1). The random stack is generated by throwing n−1
points zj randomly (using RND with the uniform distribution)
onto the interval 0 < z < h6 , and rearranging them in as-
cending order. Each element zj of the sequence so obtained
0 < z0 < z1 < · · · < zn−1 < h6 is then taken as a location on
the z-axis of j th interface between the materials (1) and (2), or
vice versa. The resulting function ε(z) is a piecewise constant
function taking the values ε0 and −ε0 with n − 1 transitions
between these values at random points. Such a function ε(z)
may be treated as a realization of a two-state random process
(so-called telegraph process), which for nÀ 1 has an exponen-
tial autocorrelation function ψ(ξ) = ε2

0 exp(−2ξ/h) with the
variance ε2

0 and the correlation length equal to half the aver-
age layer thickness h (Korn and Korn, 1968, 18.11-5). For the
periodic stack, the sequence zj is taken equidistant: zj = jh,
where h = h6/n is a thickness of each individual layer. Thus,
in the periodic case ε(z) is a periodic (nonrandom) piecewise
constant function with values ε0 and −ε0 and a period 2h.

In the first example (Figure 1), we have deliberately low-
ered the permeability of both rocks 1 and 2 as given in Table 1
by two orders of magnitude. At the same time, we have cho-
sen the individual layer thickness to be 1 cm. As can be seen
from equations (19) and (27), this artificial choice of parame-
ters puts the two peak frequencies fflow and fscat far away from

Table 1. Mechanical properties of the sample rocks 1 and 2.

Parameter Units (1) (2)

Bulk modulus of dry matrix K 109 Pa 20.0 10.0
Shear modulus of dry matrix µ 109 Pa 20.0 10.0
Bulk modulus of solid grains Ks 109 Pa 35.0 35.0
Density of solid grains ρs 103 kg/m3 2.65 2.65
Porosity φ —— 0.15 0.17
Permeability κ darcy 0.5 0.8
Fluid density ρ f 103 kg/m3 1.0 1.0
Fluid viscosity η 10−3 Pa × c 1.0 1.0
Fluid bulk modulus K f 109 Pa 2.25 2.25
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each other on the frequency axis, while keeping fflow at seismic
frequencies.

By so doing, we have effectively cleared up the peaks of
the fluid-flow attenuation from the influence of scattering and
enabled the comparison of the numerical results for a poroe-
lastic stack of layers with the theoretical predictions for this
mechanism. We see that both for random (Figure 1a) and pe-
riodic (Figure 1b) sequences of poroelastic layers, the agree-
ment between the numerical and theoretical results is satisfac-
tory. An important feature of these results is that even for a
random stack of layers, the numerically computed attenuation
coefficients do not have random oscillations, up to a certain
frequency, where for a random stack of layers the effect of
scattering begins to build up. For a periodic stack, no compli-
cation due to the scattering is observed (as expected).

In Figure 2 we show the numerical results for a more real-
istic choice of parameters (permeabilities as given in Table 1;
h = 5 m). In these examples, the theoretical peaks for the
fluid-flow and scattering attenuation overlap considerably with
each other, emphasizing the importance of the superposition
model. In Figure 2a, we compare the numerical results for
a random stack of layers with the superposition model. The
overall agreement is quite good. However, the numerical re-
sults show random oscillations around the theoretical curve.
Those oscillations represent the inherent feature of the scat-
tering attenuation (Shapiro et al., 1994). The scattering nature
of these oscillations is further evident from the comparison
of Figure 2a with Figure 2b, where analogous calculations are
shown for a purely elastic layered sequence (in the elastic case
the sole mechanism of attenuation is scattering). The oscilla-
tions in the poroelastic case are very similar in character to
those in the elastic situation, though their magnitude is lower
in the poroelastic case.

The corresponding results for a periodic stack of layers are
shown in Figure 2c. As has been predicted, scattering has no
effect in the periodic case, up to the first band-stop frequency.
The sharp peaks correspond to stopping bands as discussed in
the theoretical section above.

As can be observed in both the random and periodic cases,
at very high frequencies the standard Biot attenuation begins
to build up. The agreement of the numerical results with the
superposition model remains good.

CONCLUSIONS

We have studied the effect of fine layering on the attenua-
tion of compressional waves propagating through a finely lay-
ered poroelastic medium (normal to layering). The theoretical
model proposed assumes that the attenuation is caused by the
three mechanisms: (1) standard Biot’s attenuation, (2) scatter-
ing by fine layering, and (3) fluid flow between layers induced
by the passing wave.

For random layering, the theoretical and numerical results
show that (1) in the seismic and sonic frequency range the scat-
tering and interlayer flow attenuation mechanisms dominate
over the classical Biot attenuation; (2) the attenuation peak
for the interlayer flow attenuation occurs at lower frequen-
cies than that for the scattering attenuation; (3) the frequency

dependence of the interlayer flow attenuation is more gradual
than that for scattering or other known mechanisms of seis-
mic attenuation; (4) unlike the scattering attenuation, the in-
terlayer flow attenuation, though essentially depending on the
statistics of random layering, does not have any oscillations
around the (average) theoretical solution; (5) the average fre-
quency dependence of the attenuation caused by the combined
effect of the three mechanisms may be expressed as a superpo-
sition of the theoretical solutions for each of the mechanisms;
(6) the random oscillations of the scattering attenuation around
the average curve are lower in the poroelastic than in the cor-
responding elastic case. In other words, the presence of the
interlayer flow attenuation decreases the level of the oscilla-
tions of the scattering attenuation.

For periodic layering, the theoretical solutions obtained on
the statistical basis match both the known exact solutions and
the results of numerical modeling.
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